

starspot

starspot is a tool for measuring stellar rotation periods using
Lomb-Scargle (LS) periodograms, autocorrelation functions (ACFs), phase
dispersion minimization (PDM) and Gaussian processes (GPs).
It uses the astropy [http://www.astropy.org/] implementation of
Lomb-Scargle periodograms [http://docs.astropy.org/en/stable/stats/lombscargle.html], and the
exoplanet [https://exoplanet.dfm.io/en/stable/] implementation of
fast celerite [https://celerite.readthedocs.io/en/latest/?badge=latest]
Gaussian processes.

starspot is compatible with any light curve with time, flux and flux
uncertainty measurements, including Kepler, K2 and TESS light curves.
If your light curve is has evenly-spaced (or close to evenly-spaced)
observations, all three of these methods: LS periodograms, ACFs and GPs will
be applicable.
For unevenly spaced light curves like those from the Gaia, or ground-based
observatories, LS periodograms and GPs are preferable to ACFs.

Example usage

import numpy as np
import starspot as ss

Generate some data
time = np.linspace(0, 100, 10000)
period = 10
w = 2*np.pi/period
flux = np.sin(w*time) + np.random.randn(len(time))*1e-2 + \
 np.random.randn(len(time))*.01
flux_err = np.ones_like(flux)*.01

rotate = ss.RotationModel(time, flux, flux_err)

Calculate the Lomb Scargle periodogram period (highest peak in the periodogram).
lomb_scargle_period = rotate.ls_rotation()

Calculate the autocorrelation function (ACF) period (highest peak in the ACF).
This is for evenly sampled data only -- time between observations is 'interval'.
acf_period = rotate.acf_rotation(interval=np.diff(time)[0])

Calculate the phase dispersion minimization period (period of lowest dispersion).
period_grid = np.linspace(5, 20, 1000)
pdm_period = rotate.pdm_rotation(period_grid)

print(lomb_scargle_period, acf_period, pdm_period)
>> 9.99892010582963 10.011001100110011 10.0

Calculate a Gaussian process rotation period
gp_period = rotate.GP_rotation()

User Guide

	Installation
	Dependencies

	API documentation

Tutorials

	A quick starspot tutorial: measuring the rotation period of a TESS star

License & attribution

Copyright 2018, Ruth Angus.

The source code is made available under the terms of the MIT license.

If you make use of this code, please cite this package and its dependencies.
You can find more information about how and what to cite in the
citation documentation.

	Search Page

Installation

Currently the best way to install starspot is from github.

From source:

git clone https://github.com/RuthAngus/starspot.git
cd starspot
python setup.py install

Dependencies

The dependencies of starspot are
NumPy [http://www.numpy.org/],
pandas [https://pandas.pydata.org/],
h5py [https://www.h5py.org/],
tqdm [https://tqdm.github.io/],
emcee [http://dfm.io/emcee/current/],
exoplanet [https://exoplanet.readthedocs.io/en/stable/],
astropy [http://www.astropy.org/],
matplotlib [https://matplotlib.org/],
scipy [https://www.scipy.org/], and
kplr [http://dfm.io/kplr/].

These can be installed using pip:

conda install numpy pandas h5py tqdm emcee exoplanet astropy matplotlib
scipy kplr

or

pip install numpy pandas h5py tqdm emcee exoplanet astropy matplotlib
scipy kplr

API documentation

Note

This tutorial was generated from an IPython notebook that can be
downloaded here.

A quick starspot tutorial: measuring the rotation period of a TESS star

In this tutorial we’ll measure the rotation period of a TESS target.
First we’ll download and plot a light curve using the lightkurve
package.

import numpy as np
import lightkurve as lk

starname = "TIC 10863087"
lcf = lk.search_lightcurvefile(starname).download()

Warning: 31% (6168/19692) of the cadences will be ignored due to the quality mask (quality_bitmask=175).

lc = lcf.PDCSAP_FLUX
lc.scatter(alpha=.5, s=.5);

[image: ../_images/Tutorial_3_0.png]
First of all, let’s remove the flares which will limit our ability to
measure a rotation period by sigma clipping.

import starspot as ss
import matplotlib.pyplot as plt
%matplotlib inline

Calculate the median so that we can median-normalize.
med = np.median(lc.flux)

Do an initial sigma clip to remove big outliers.
m = ss.sigma_clip(lc.flux/med - 1, nsigma=6)
x, y, yerr = lc.time[m], lc.flux[m]/med - 1, lc.flux_err[m]/med

Then a sigma clip using a Sav-Gol filter for smoothing
mask, smooth = ss.filter_sigma_clip(x, y, window_length=199)

time, flux, flux_err = x[mask], y[mask], yerr[mask]

plt.figure(figsize=(16, 4), dpi=200)
plt.plot(lc.time, lc.flux/med-1, ".", label="Outliers")
plt.plot(time, flux, "k.", label="Clipped")
plt.plot(x, smooth, label="Smoothed light curve")
plt.xlabel("Time [days]")
plt.ylabel("Flux");
plt.ylim(-.02, .02);
plt.legend(loc="lower right", fontsize=15);

[image: ../_images/Tutorial_5_0.png]
Next, let’s import starspot and set up a RotationModel object.

import starspot as ss

rotate = ss.RotationModel(time, flux, flux_err)

We can also plot the light curve using the lc_plot function in
starspot:

rotate.lc_plot()

[image: ../_images/Tutorial_9_0.png]
Now let’s measure a rotation period for this star using the astropy
implementation of the Lomb-Scargle periodogram. This algorithm fits a
single sinusoid to the light curve and reports the squared amplitude of
the sinusoid over a range of frequencies (1/periods).

ls_period = rotate.ls_rotation()

ls_period

0.860808017577187

We measured a rotation period of 0.86 days by finding the period of the
highest peak in the periodogram. Let’s plot the periodogram.

rotate.ls_plot();

[image: ../_images/Tutorial_14_0.png]
Now let’s calculate an ACF and measure a rotation period by finding the
highest peak.

tess_cadence = 1./24./30. # This is a TESS 2 minute cadence star.
acf_period = rotate.acf_rotation(tess_cadence)

acf_period

0.8749999999999999

rotate.acf_plot();

[image: ../_images/Tutorial_18_0.png]
This method estimates a period of 0.88 days, which is very close to the
periodogram method. It is important to note that the LS periodogram
method and the ACF method are not independent, i.e. if you measure a
certain rotation period with one, you are likely to measure the same
rotation period with the other. These two methods should not be used as
independent ‘checks’ to validate a measured rotation period.

Now, let’s calculate a rotation period using the Phase Dispersion
Minimization algorithm of Stellingwerf
(1978) [https://ui.adsabs.harvard.edu/abs/1978ApJ...224..953S/abstract].
This function will return the period with the lowest phase dispersion.
It also fits a Gaussian to the dispersion curve in order to estimate the
uncertainty. This Gaussian is shown in blue in the lower panel.

period_grid = np.linspace(.1, 2, 1000)

Set the number of bins to 10
pdm_period, period_err = rotate.pdm_rotation(period_grid, pdm_nbins=10)
print(pdm_period, period_err)

100%|██████████| 1000/1000 [00:05<00:00, 168.10it/s]

0.8607607607607607 0.011651757899962235

rotate.pdm_plot();

[image: ../_images/Tutorial_22_0.png]
Now we can plot all these methods together in a single figure, with the
light curve folded on the three different periods using big_plot:

Provide the list of methods and xlimits for the bottom panels
fig = rotate.big_plot(["ls", "acf", "pdm"], method_xlim=(0, 3));

[image: ../_images/Tutorial_24_0.png]
The Lomb-Scargle periodogram, ACF, and phase dispersion arrays are
accessible via:

Lomb-Scargle periodogram
period_array = 1./rotate.freq
power_array = rotate.power

Autocorrelation function
ACF_array = rotate.acf
lag_array = rotate.lags

Phase-dispersion minimization
phi_array = rotate.phis # The 'dispersion' plotted in the lower panel above.
period_grid = period_grid # We already defined this above.

These could come in handy because it might be useful to calculate
various peak statistics. We can do that with the get_peak_statistics()
function in rotation_tools, e.g.

Get peak positions and heights, in order of highest to lowest peak.
peak_positions, peak_heights = ss.get_peak_statistics(1./rotate.freq, rotate.power)

This is the period of the highest peak (which is the default LS period)
print(peak_positions[0])

0.860808017577187

For the ACF peak statistics, we might choose either the highest peak as
the period (default in starrotate):

Get peak positions and heights, in order of highest to lowest peak.
acf_peak_positions, acf_peak_heights = ss.get_peak_statistics(rotate.lags,
 rotate.acf,
 sort_by="height")
print(acf_peak_positions[0])

0.8749999999999999

Or the first peak:

Get peak positions and heights, in order of lags.
acf_peak_positions, acf_peak_heights = ss.get_peak_statistics(rotate.lags,
 rotate.acf,
 sort_by="position")
print(acf_peak_positions[0])

0.8749999999999999

In this example the first and the highest peak are the same.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 stardate	

 	
 	
 starspot	

Index

 S

S

 	
 	stardate (module), [1]

 	
 	starspot (module)

Note

This tutorial was generated from an IPython notebook that can be
downloaded here.

How to find eclipsing binaries and transits and (optionally) mask them.

Warning: this code is not yet stable.

You may want to mask transits if you’re trying to measure a star’s
rotation period. The transits can interfere with the rotation period
measurement. Not shown in this tutorial is a smoothing step. To find
transits using BLS, it’s best if the stellar variability is removed
first. People often use a median filter for this.

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

import starspot as ss

Simulate some Basic data.

N = 1000
x = np.linspace(0, 100, N)
err = 1e-3
y = np.random.randn(N)*err + 1
yerr = np.ones_like(y)*err

t0, dur_hours, porb = 12, 24, 20
dur_days = dur_hours/24.

Create 'eclipses' or 'transits'
mask = ((x - (t0 - .5*dur_days)) % porb) < dur_days
y[mask] -= 1e-2

plt.plot(x, y, ".");
plt.xlabel("Time [days]")
plt.ylabel("Normalized Flux");

[image: ../_images/Eclipses_and_transits_4_0.png]
Plot the folded light curve.

true_phase = ss.calc_phase(porb, x-t0)
plt.plot(true_phase, y, "k.")
plt.plot(true_phase+1, y, "k.")
plt.xlim(.5, 1.5);
plt.xlabel("Phase")
plt.ylabel("Normalized Flux");

[image: ../_images/Eclipses_and_transits_6_0.png]
Now find the period and epoch of the transits. This is just a wrapper to
the astropy.timeseries BLS algorithm.

period_grid = np.linspace(2, 20, 100) # The array of periods to search over for BLS.
duration_grid = np.linspace(.5, 1.5, 10) # The array of durations (in days) to search over for BLS.
 # (The longest duration must be shorter than the shortest period)

transit_masks, t0s, durs, porbs = ss.find_and_mask_transits(x, y, yerr, # The light curve
 period_grid, duration_grid, # The period & duration grids for BLS
 nplanets=1, # The number of companions to look for.
 plot=True) # Option to plot the BLS periodogram.

[image: ../_images/Eclipses_and_transits_9_0.png]
Compare the results to the true values.

print(t0, dur_days, porb)
print(t0s[0], durs[0], porbs[0])

12 1.0 20
12.075000000000001 1.05 19.9667221297837

Plot the light curve, folded on the detected period, over the truth.

phase = ss.calc_phase(porbs[0], x-t0s[0])
plt.plot(true_phase, y, "C0.", zorder=0)
plt.plot(true_phase+1, y, "C0.", zorder=0)
plt.plot(phase, y, "k.")
plt.plot(phase+1, y, "k.")
plt.xlim(.5, 1.5);
plt.xlabel("Phase")
plt.ylabel("Normalized Flux");

[image: ../_images/Eclipses_and_transits_13_0.png]
Mask the transits and plot the resulting light curve.

plt.plot(x, y, "C1.")
plt.plot(x[~transit_masks[0]], y[~transit_masks[0]], "C0.")

[<matplotlib.lines.Line2D at 0x7f92578ad810>]

[image: ../_images/Eclipses_and_transits_15_1.png]
Or

mask = ss.transit_mask(x, t0s[0], durs[0]+.1, porbs[0])
plt.plot(x, y, "C1.")
plt.plot(x[mask], y[mask], "C0.")

[<matplotlib.lines.Line2D at 0x7f92578ce810>]

[image: ../_images/Eclipses_and_transits_17_1.png]

 _images/Tutorial_24_0.png
PDM = 0.86 +/- 0.01 days. LS = 0.86 days. ACF = 0.87 days.

1392.5 1395.0 1397.5 1400.0 1402.5 1405.0
days|

1390.0

1387.5

— (@] —
o S o
@} @} @)

|
XN POZI[RULION

1385.0

Time

.....

0.8 1.0

0.6

0.4

PDM Phase

0.8 0.0 0.2

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

— -}

—
o S o
@} @} @)

|
XN POZI[RULION

0.0

ACF Phase

LS Phase

—
Y n S ., o 1w 2
5o A = = L
=) =) =) _ — =) =) =)
MO J — TOTYR[OLI00JIY UOTSIOASI(] OATFR[Y

L1

(@]

L=

(@]
=1
<

" .

— QO
m

—

—

L2

(@]

<

(@]

3.0

_images/Tutorial_3_0.png
Flux [e”s7]

16000

15000

14000

13000

12000

11000

10000

AAAAATNAAAAA,

TIC 10863087

1385.0 1387.5 1390.0 1392.5 1395.0 1397.5 1400.0 1402.5 1405.0

Time - 2457000 [BTJD days]

_images/Tutorial_18_0.png
Correlation

0 2 4 [8 10
Period [days]

_images/Tutorial_22_0.png
1390.0 1392.5 1395.0 1397.5 1400.0 1402.5 1405.0

1387.5

1385.0

Time

1.0

0.8

0.0

0.6

0.4

0.2

Phase

1.25 50 1.75 2.00

1.00
Period [days]

0.7

05

0.25

<
—

2

@}
uoisiadsi(

1

5

0

_static/ajax-loader.gif

_images/Tutorial_5_0.png
Flux

0.02

'Y L]
.
0.01 + ',:
o. A
0.00 1
.
14 Outliers
—0.0 Clipped
. * —— Smoothed light curve

—093g50 1387.5 1390.0 1392.5 1395.0 1397.5 1400.0 1402.5 1405.0
Time [days]

_images/Tutorial_9_0.png
L

T
T

XN|4 3AIIR[RY

1400.0

1395.0

13925

1390.0

1385.0

Time [days]

_static/comment-bright.png

_static/comment-close.png

_images/Eclipses_and_transits_6_0.png
1.000

0.995

Normalized Flux

0.990

_images/Eclipses_and_transits_9_0.png
log likelihood

30
period [days]

_images/Eclipses_and_transits_17_1.png
o

e

PR

100

i

25

_images/Eclipses_and_transits_4_0.png
Normalized Flux

P S TN
e e 2
1.000 1 &
Rl S R s S SR
0.995
Py 1
0.990 i ! H ; H
0 25 50 75 100

Time [days]

_images/Tutorial_14_0.png
Power

0.50 0.75
log10(Period [days])

1.00

i

1.50

_static/comment.png

nav.xhtml

 Table of Contents

 		
 starspot

 		
 Installation

 		
 Dependencies

 		
 API documentation

 		
 A quick starspot tutorial: measuring the rotation period of a TESS star

_images/Eclipses_and_transits_13_0.png
1.000

X

El

).995

|4 p3z

1ew

0.990

<]

=

Phase

_images/Eclipses_and_transits_15_1.png
o

e

cowe o

100

i

25

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

